Environments¶
Below is the list of Deep Learning environments supported by FloydHub. Any of
these can be specified in the floyd run command using the
--env
option.
If no --env
is provided, it uses the keras
image by default, which comes with Python
3, Keras 2.0.4 and Tensorflow 1.1.0 pre-installed.
Framework | Env name (--env parameter) | Description | Docker Image |
---|---|---|---|
Keras | keras | Tensorflow 1.1.0 + keras 2.0.6 on Python3.5. | |
keras:py2 | Tensorflow 1.1.0 + keras 2.0.6 on Python2. | ||
Tensorflow 1.4 | tensorflow-1.4 | Tensorflow 1.4.0 + Keras 2.0.8 on Python3.6. | floydhub/tensorflow |
tensorflow-1.4:py2 | Tensorflow 1.4.0 + Keras 2.0.8 on Python2. | floydhub/tensorflow | |
Tensorflow 1.3 | tensorflow-1.3 | Tensorflow 1.3.0 + Keras 2.0.6 on Python3.6. | floydhub/tensorflow |
tensorflow-1.3:py2 | Tensorflow 1.3.0 + Keras 2.0.6 on Python2. | floydhub/tensorflow | |
Tensorflow 1.2 | tensorflow-1.2 | Tensorflow 1.2.0 + Keras 2.0.6 on Python3.5. | floydhub/tensorflow |
tensorflow-1.2:py2 | Tensorflow 1.2.0 + Keras 2.0.6 on Python2. | floydhub/tensorflow | |
Tensorflow 1.1 | tensorflow | Tensorflow 1.1.0 + Keras 2.0.6 on Python3.5. | floydhub/tensorflow |
tensorflow:py2 | Tensorflow 1.1.0 + Keras 2.0.6 on Python2. | floydhub/tensorflow | |
Tensorflow 1.0 | tensorflow-1.0 | Tensorflow 1.0.0 + Keras 2.0.6 on Python3.5. | floydhub/tensorflow |
tensorflow-1.0:py2 | Tensorflow 1.0.0 + Keras 2.0.6 on Python2. | floydhub/tensorflow | |
Tensorflow 0.12 | tensorflow-0.12 | Tensorflow 0.12.1 + Keras 1.2.2 on Python3.5. | floydhub/tensorflow |
tensorflow-0.12:py2 | Tensorflow 0.12.1 + Keras 1.2.2 on Python2. | floydhub/tensorflow | |
PyTorch 0.2 | pytorch-0.2 | PyTorch 0.2.0 on Python 3. | floydhub/pytorch |
pytorch-0.2:py2 | PyTorch 0.2.0 on Python 2. | floydhub/pytorch | |
PyTorch 0.1 | pytorch-0.1 | PyTorch 0.1.12 on Python 3. | floydhub/pytorch |
pytorch-0.1:py2 | PyTorch 0.1.12 on Python 2. | floydhub/pytorch | |
Theano 0.8 | theano-0.8 | Theano rel-0.8.2 + Keras 1.2.2 on Python3.5. | floydhub/theano |
theano-0.8:py2 | Theano rel-0.8.2 + Keras 1.2.2 on Python2. | floydhub/theano | |
Theano 0.9 | theano-0.9 | Theano rel-0.8.2 + Keras 2.0.3 on Python3.5. | floydhub/theano |
theano-0.9:py2 | Theano rel-0.8.2 + Keras 2.0.3 on Python2. | floydhub/theano | |
Caffe | caffe | Caffe rc4 on Python3.5. | floydhub/caffe |
caffe:py2 | Caffe rc4 on Python2. | floydhub/caffe | |
Torch | torch | Torch 7 with Python 3 env. | floydhub/torch |
torch:py2 | Torch 7 with Python 2 env. | floydhub/torch | |
Chainer 1.23 | chainer-1.23 | Chainer 1.23.0 on Python 3. | floydhub/chainer |
chainer-1.23:py2 | Chainer 1.23.0 on Python 2. | floydhub/chainer | |
Chainer 2.0 | chainer-2.0 | Chainer 1.23.0 on Python 3. | floydhub/chainer |
chainer-2.0:py2 | Chainer 1.23.0 on Python 2. | floydhub/chainer | |
MxNet (beta) | mxnet:py2 | MxNet 0.9.3a on Python 2. | floydhub/mxnet |
Kur | kur | Kur 0.3.0 on Python 3. | floydhub/kur |
All environments are available for both CPU and GPU execution. For example,
To run a Python2 Tensorflow job on CPU
$ floyd run --env tensorflow:py2 "python mnist_cnn.py"
To run a Python2 Tensorflow job on GPU (CUDA, cuDNN, etc. installed)
$ floyd run --env tensorflow:py2 --gpu "python mnist_cnn.py"
The following software packages (in addition to many other common libraries) are available in all the environments:
h5py, iPython, Jupyter, matplotlib, numpy, OpenCV, Pandas, Pillow, scikit-learn, scipy, sklearn
Help make this document better¶
This guide, as well as the rest of our docs, are open-source and available on GitHub. We welcome your contributions.
- Suggest an edit to this page (by clicking the edit icon at the top next to the title).
- Open an issue about this page to report a problem.